Abstract

This paper reports experimental results on the effects of plasma aerodynamic actuation (PAA) on corner separation control in a highly loaded, low speed, linear compressor cascade. Total pressure loss coefficient distribution was adopted to evaluate the corner separation control effect in wind tunnel experiments. Results of pressure measurements and particle image velocimetry (PIV) show that the control effect of pitch-wise PAA on the endwall is much better than that of stream-wise PAA on the suction surface. When both the pitch-wise PAA on the endwall and stream-wise PAA on the suction surface are turned on simultaneously, the control effect is the best among all three PAA types. The mechanisms of nanosecond discharge and microsecond discharge PAA are different in corner separation control. The control effect of microsecond discharge PAA turns out better with the increase of discharge voltage and duty cycle. Compared with microsecond discharge PAA, nanosecond discharge PAA is more effective in preventing corner separation when the freestream velocity increases. Frequency is one of the most important parameters in plasma flow control. The optimum excitation frequency of microsecond discharge PAA is 500 Hz, which is different from the frequency corresponding to the case with a Strouhal number of unity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call