Abstract

Flowering phenology is a critical life-history trait that influences reproductive success. It has been shown that genetic, climatic and other factors such as plant size affect the timing of flowering and its duration. The spatial and temporal variation in the reproductive phenology of the columnar cactus Stenocereus thurberi and its association with plant size and environmental cues was studied. Flowering was monitored during 3 years in three populations of S. thurberi along a latitudinal gradient. Plant size was related to phenological parameters. The actual and past weather were used for each site and year to investigate the environmental correlates of flowering. There was significant variation in the timing of flowering within and among populations. Flowering lasted 4 months in the southern population and only 2 months in the northern population. A single flowering peak was evident in each population, but ocurred at different times. Large plants produced more flowers, and bloomed earlier and for a longer period than small plants. Population synchrony increased as the mean duration of flowering per individual decreased. The onset of flowering is primarily related to the variance in winter minimum temperatures and the duration to the autumn-winter mean maximum temperature, whereas spring mean maximum temperature is best correlated with synchrony. Plant size affects individual plant fecundity as well as flowering time. Thus the population structure strongly affects flowering phenology. Indications of clinal variation in the timing of flowering and reproductive effort suggest selection pressures related to the arrival of migrating pollinators, climate and resource economy in a desert environment. These pressures are likely to be relaxed in populations where individual plants can attain large sizes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call