Abstract

Radial oxygen loss (ROL) by the spreading root systems of vegetation can improve soil aeration for subsequent oxidation of methane (CH4) by microbes in landfill cover soils. This study proposes a theoretical model that elucidated the effects of ROL on microbial oxidation of CH4 to understand landfill gas transportation and oxidation in landfill cover soils. Parametric analyses were conducted to investigate the effects of root depth, root architecture, and ROL rate on the CH4 oxidation efficiency of landfill cover soils. The simulation results suggested that disregarding O2 emissions by plants root systems could underestimate the CH4 oxidation efficiency, especially when the water content ranged from 20% to 35%. Additionally, plants with a parabolic root architecture indicated 7–13% higher CH4 oxidation efficiency than other root architectures, i.e., uniform, triangular, and exponential. The CH4 oxidation efficiency increased rapidly at root depths less than 0.25 m. Therefore, plants characterized by a parabolic root architecture, longer root length, and higher ROL capacity should be selected as the preferred species for mitigating CH4 emissions from landfills in humid areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call