Abstract

By carefully separating type I and type II resistances, the possible effects of plant height on fusarium head blight (FHB) resistance in wheat were assessed using near‐isogenic lines (NILs) for several different reduced‐height (Rht) genes. Tall isolines all gave better type I resistance than their respective dwarf counterparts when assessed at their natural heights. These differences largely disappeared when the dwarf isolines were physically raised so that their spikes were positioned at the same height as those of their respective tall counterparts. The effects of plant height on type II resistance was less clear. For those NIL pairs which showed significant differences, it was the dwarf isolines which gave better resistance. As the Rht genes involved in these NILs locate at different genomic regions, the differences in FHB between the dwarf and tall isolines are unlikely to be the result of linkages between each of the different Rht loci with a beneficial or a deleterious gene affecting type I or type II resistance. Rather, the different FHB resistances are probably caused by direct or indirect effects of height difference per se, and microclimate may have contributed to the better type I resistance of the tall plants. Thus, caution should be exercised when attempting to exploit any of the FHB resistant loci co‐located with Rht genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call