Abstract

As the most important cultural practices for cotton production, the single effects of plant density and [nitrogen (N) and potassium (K)] fertilization on yield and yield components are well documented but their combined effects on Bt cotton are poorly understood. Using a split–split plot design with four replications, we conducted a two-year field experiment in two fields, one with lower fertility and the other with higher fertility, in the Yellow River Valley of China. The aim was to evaluate both the individual and combined effects of plant density and nitrogen and potassium fertilization on yield, yield components and uptake of major nutrients. The main plots were assigned to plant density (4.5 and 7.5 plants/m 2), while nitrogen (0 and 240 kg N/ha) and potassium fertilization (0 and 150 kg K/ha) were assigned to the sub- and sub–subplots. Lint yield was improved with high plant density (7.5 plants/m 2) in the lower fertility field, particularly without N and K application, but not in the higher fertility field. Nitrogen or K application also increased lint yield, and a combination of high plant density, N and K application further improved lint yield in the lower fertility field, while only K application increased lint yield in the higher fertility field. Lint percentage was not affected by any of the variables studied. Thus, the yield increase due to plant density, fertilization or their combinations was attributed to increases in boll number or boll weight. The ratio of seed cotton to stalk (RSS) was linearly correlated with harvest index, and thus can be a simple indicator of dry matter allocation to reproductive structures. Increased yield due to plant density and fertilization was mainly attributed to the enhanced biological yield in the lower fertility field, while the yield increase due to K fertilization was mainly due to increased RSS in the higher fertility field. The plants used approximately equal N and P to produce 100 kg lint in both fields, but the uptake of K to produce 100 kg lint in the higher fertility field was about 21% more than that in the lower fertility field. Ratios of N:P:K were 1:0.159:0.604 in the lower fertility field and 1:0.159:0.734 in higher fertility field. This study suggests that K fertilization was extremely important for maintaining high yield, although luxury consumption occurred in the higher fertility field; N was applied more than required in the highly fertile field, and increased plant density would be beneficial to cotton yield in the lower fertility field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call