Abstract

Left right symmetric models (LRSM) are extensions of the standard model by an enlarged gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ where automatic inclusion of right handed fermions as $SU(2)_R$ doublets guarantees a natural seesaw origin of neutrino masses. Apart from the extended gauge symmetry, LRSM also has an in-built global discrete symmetry, called D-parity which ensures equal gauge couplings for left and right sectors. Motivated by the fact that global symmetries are expected to be explicitly broken by theories of quantum gravity, here we study the effects of such gravity or Planck scale physics on neutrino masses and mixings by introducing explict D-parity breaking Planck scale suppressed higher dimensional operators. Although such Planck scale suppressd operators have dimension at least six in generic LRSM, dimension five operators can also arise in the presence of additional scalar fields which can be naturally accommodated within SO(10) grand unified theory (GUT) multiplets. We show that, such corrections can give rise to significant changes in the predictions for neutrino mixing parameters from the ones predicted by tree level seesaw formula if the left right symmetry breaking scale is lower than $10^{14}$ GeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.