Abstract

Effects of pitching motion profile on energy harvesting performance of a semi-active flapping foil are numerically studied using immersed boundary method. Firstly, the numerical method is validated by considering a sinusoidal pitching semi-active flapping foil at Re = 1000 and a uniform flow over a stationary foil at Reynolds number Re = 500. Then, we consider a semi-active flapping foil with Reynolds number Re = 1000 and study the effect of sine-like and cosine-like pitching motion on the energy harvesting performance at reduced frequency f∗ = 0.16. We study the pitching, with a gradual change from a sinusoid/cosinusoid to a square wave as β is increased from one. We found that increasing the value of β is ineffective to enhance energy harvesting efficiency for sine-like pitching motion, which is in agreement with the results of Deng et al. (2015) and Teng et al. (2016), however, for cosine-like pitching motion, the highest energy harvesting efficiency of 51.81% is recorded for pitching amplitude θ0 = 60° and β = 2.0. Meanwhile, we observed that cosinusoidal pitching motion is more efficient for energy harvesting than sinusoidal pitching motion, and non-cosinusoidal pitching motion can enhance the harvesting efficiency compared to cosinusoidal pitching motion. In detail, we report the different performances of the sine-like and cosine-like pitching motion to study the mechanical mechanism of enhancing energy harvesting efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.