Abstract

The purpose of this study is to investigate the stratification of fuel vapor with different in-cylinder flow, piston cavity and injection timings in an optically accessible engine. Three different piston shapes that are F (Flat), B (Bowl) and R (Re-entrance) types were used. The images of liquid and vapor fuel were captured under the motoring condition using Laser Induced Exciplex Fluorescence technique. As a result, at early injection timing of 270° BTDC, liquid fuel was evaporated faster by tumble flow than swirl flow, where most of fuel vapor were transported by tumble flow to the lower region and both sides of cylinder for the F-type piston. At late injection timing of 90° BTDC, tumble flow appears to be moving the fuel vapor to the intake side of the cylinder, while swirl flow convects the fuel vapor to the exhaust side. The concentration of mixture in the center region was highest in the B-type piston, while fuel vapor was transported to the exhaust side by swirl flow in F and R-type pistons. At the injection timing of 60° BTDC, the R -type piston was better for stratification due to a relatively smaller bowl diameter than the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.