Abstract

Recently, ionic current simulation in the Luo-Rudy model has elucidated putative mechanisms of afterdepolarizations under various experimental conditions. The present study was aimed at gaining insight into the differential mechanism of different types of afterdepolarizations in the guinea-pig heart in vivo. The effects of pharmacological and heart rate perturbations on early (EADs) and delayed (DADs) afterdepolarizations, induced by either digoxin, CsCl, or BayK 8644 were studied, using mid-myocardial left ventricular monophasic action potential (MAP) recordings. Digoxin insignificantly shortened sinus cycle length (SCL) and CsCl and BayK 8644 differentially prolonged SCL and MAP duration. Digoxin induced phase 3-EADs and DADs and CsCl or BayK 8644 induced phase 2- and phase 3-EADs. Pinacidil shortened MAP duration, suppressed almost all the phase 2-EADs and some of the phase 3-EADs, but not the DADs. In a few cases, DADs were manifested following the abolishment of phase 2-EADs by pinacidil, but this phenomenon did not occur in the presence of hexamethonium. Verapamil prolonged SCL, did not significantly affect phase 2-EADs, but suppressed almost all of the DADs, including those which appeared after pinacidil, and all but one of the phase 3-EADs. The effects of pinacidil and verapamil were independent of the mode of afterdepolarization induction. A pacing-induced heart rate increase, which shortened MAP duration, and vagal stimulation, which prolonged MAP duration, attenuated and enhanced phase 2-EADs, respectively. The amplitude of phase 3-EADs was inversely related to the heart rate. These data, taken together, are consistent with those obtained previously by others in a computer model and recent observations on CsCl-induced EADs in the guinea-pig Purkinje fibers in vitro which have indicated that the mechanism of phase 2-EADs is different from that of DADs and that late phase 3-EADs generated under conditions of Ca2+ overload and DADs share similar properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call