Abstract

Phytoestrogens and environmental estrogens, which have in part some structural similarity to 17beta-estradiol, are reported to act as agonists/antagonists of estrogen in animals and humans. Estrogen is known to play an important role in maintaining bone mass, since the concentration of serum estrogen decreases after menopause and the estrogen deficiency results in bone loss. In this study, we report the effects of phytoestrogens (genistein, daidzein, and coumestrol) and environmental estrogens (bisphenol A (BPA), p-n-nonylphenol (NP) and bis(2-ethylhexyl)phthalate (DEHP)) on osteoblast differentiation using MC3T3-E1 cells, a mouse calvaria osteoblast-like cell line. Coumestrol (10(-10) to 10(-6)M) slightly enhanced cell proliferation, while neither the other phytoestrogens (daidzein, genistein) nor environmental estrogens increased cell proliferation. Alkaline phosphatase (ALP) activity and cellular calcium (Ca) and phosphorus (P) contents were increased by phytoestrogens and BPA; however, neither NP nor DEHP affected those osteoblastic indicators. The effects of estrogenic potency, using the cell proliferation of MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line, indicate that coumestrol has the highest estrogenic potency among those phytoestrogens and environmental estrogens. The estrogenic potency of NP and DEHP were lower than the others. In conclusion, phytoestrogens, such as coumestrol, genistein and daidzein, and BPA increased ALP activity and enhanced bone mineralization in MC3T3-E1 cells, suggesting that not only phytoestrogen but also BPA, an environmental estrogen, is implicated in bone metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call