Abstract

The goal of this study is to characterize the potential effect of artifacts originating from physiological noise on statistical analysis of diffusion tensor MRI (DTI) data in a population. DTI derived quantities including mean diffusivity (Trace(D)), fractional anisotropy (FA), and principal eigenvector (ε1) are computed in the brain of 40 healthy subjects from tensors estimated using two different methods: conventional nonlinear least-squares, and robust fitting (RESTORE). RESTORE identifies artifactual data points as outliers and excludes them on a voxel-by-voxel basis. We found that outlier data points are localized in specific spatial clusters in the population, indicating a consistency in brain regions affected across subjects. In brain parenchyma RESTORE slightly reduces inter-subject variance of FA and Trace(D). The dominant effect of artifacts, however, is bias. Voxel-wise analysis indicates that inclusion of outlier data points results in clusters of under- and over-estimation of FA, while Trace(D) is always over-estimated. Removing outliers affects ε1 mostly in low anisotropy regions. It was found that brain regions known to be affected by cardiac pulsation – cerebellum and genu of the corpus callosum, as well as regions not previously reported, splenium of the corpus callosum–show significant effects in the population analysis. It is generally assumed that statistical properties of DTI data are homogenous across the brain. This assumption does not appear to be valid based on these results. The use of RESTORE can lead to a more accurate evaluation of a population, and help reduce spurious findings that may occur due to artifacts in DTI data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.