Abstract

Forward finite difference expressions of first-order accuracy for boundary vorticity on a solid boundary are evaluated in this work when the physical coordinates are clustered and mapped using von Mises coordinates. Results show that schemes using in-field grid points do not improve solutions obtained. Results also show that the finer the grid used in the physical domain, and the more clustered it is, improves the boundary vorticity values in the computational domain. The “best” expressions forward finite difference expressions are identified when two, three, four and five grid points are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.