Abstract

Phosphorus is essential in critical plant processes such as signaling, photosynthesis, energy metabolism, and enzyme activity during respiration. Phosphorus stress therefore has a significant impact on plant growth and metabolism. Here, we characterized the biochemical responses of Artemisia argyi Level. et Vant to low phosphorus (LP) and high phosphorus (HP) stress. Plants were treated with 0g (LP), 1.5g (control), or 3g (HP) P per 10kg of soil. The results demonstrated that CK encouraged the most plant growth, as quantified by leaf size and plant biomass. We also found that the total amounts of phenolic and flavonoid compounds (such as chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, cryptochlorogenic acid, neochlorogenic acid, hispidulin, jaceosidin, eupatilin, and casticin) were increased in the leaves of A. argyi plants exposed to LP stress compared to those raised under CK conditions. The levels of these compounds were inversely related to the amount of phosphorus added, and therefore peaked in plants treated with LP stress. Levels of terpenoids were also found to fluctuate under LP and HP stress compared to CK conditions. Furthermore, transcriptomic analyses showed up-regulation of several genes encoding key enzymes in the flavonoid and phenolic acid metabolic pathways under LP stress. There were also alterations in the expression levels of genes in the methylerythritol 4-phosphate and mevalonate pathways of terpene synthesis. This study contributes to a deeper understanding of the physiological and molecular mechanisms underlying phosphorus stress responses and their impacts on the growth and quality of the economically important species A. argyi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call