Abstract

In order to compare their inherent flame retardancy and thermal stability, two phosphorus-containing thermotropic liquid crystalline copolyesters (P-TLCP) were synthesized by melting transesterification. Additionally based on the facts that the P-TLCP can work as a functional additive to enhance the flame retardancy and mechanical property of PET, we further studied the flame retardant mechanism. Scanning Electronic Microscope (SEM) observations show that the char from PET/P-TLCP is more compact, therefore more efficiently resists fire and heat attack than pure PET. Moreover, Fourier Transform Infrared Spectroscopy (FTIR) measurements of evolved gas, indicate that P-TLCP decomposes to produce phosphorus-containing small molecular compounds during the pyrolysis process, such that P-TLCP could play a flame retardant role in vapour phase. Furthermore, P-TLCP strongly inhibits the generation of combustible compounds in the pyrolysis of PET, which also helps to resist fire propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.