Abstract

AbstractCadmium accumulation in crops presents a potential risk to human health. To understand the difference between dicotyledonous and monocotyledonous species in respect of Cd accumulation, and to develop fertilizer management practices to minimise Cd uptake, a growth chamber study was conducted to evaluate the interactive effects of Cd concentration in phosphate and Zn fertilizer on Cd uptake in flax (Linum usitatissimum L) and durum wheat (Triticum turgidum L). Cadmium concentration was higher in flax than durum wheat shoots. Cadmium concentration was lower and Zn concentration higher in the flax seed and durum wheat grain than in the root, shoot or straw of both species. These results suggest that flax has comparatively ineffective barriers discriminating against the transport of Cd from the root to the shoot via the xylem, and that both crops may restrict Cd translocation to the seed/grain via the phloem. Commercial grade monoammonium phosphate (NH4H2PO4) or triple superphosphate (Ca(H2PO4)2) produced higher seed Cd concentrations than did reagent grade P in flax but not in durum wheat. Application of P significantly decreased seed/grain Zn concentration and increased seed/grain Cd concentration. Zinc addition at 20 mg Zn kg−1 soil with P decreased seed/grain Cd concentration (average 42.2% for flax, 65.4% for durum wheat), Cd accumulation (average 37.2% for flax, 62.4% for durum wheat) and Cd translocation to the seed/grain (average 20.0% for flax, 34.5% for durum wheat) in both crops. These results indicate that there is an antagonistic effect of Zn on Cd for root uptake and distribution within the plant. Copyright © 2004 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.