Abstract

All of the isobranched fatty acids of 12 to 18 carbons have been synthesized in gram quantities by a convenient acetylene coupling reaction followed by catalytic hydrogenation. The corresponding phosphatidylcholines (PCs) have been synthesized and their thermotropic phase behavior investigated by differential thermal analysis. The isobranched acyl phosphatidylcholines show gel-to-liquid-crystalline phase transition temperature ( T cs) some 20°C below those of the corresponding straight-chain PCs and appear to exhibit two slowly interconverting low-temperature phases below T c. The observed strong alternation of T cs between isobranched PCs with odd- and even-carbon number acyl chains contrasts with the behavior of the straight-chain PCs and suggests that the acyl chains of the branched-chain PCs are strongly tilted with respect to the bilayer normal below and/or above T c while those of the straight-chain PCs are not. These results clearly indicate significant differences in the overall packing of branched-and straight-chain PCs in the gel and possibly the liquid-crystalline state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.