Abstract

Phenylketonuria (PKU) is characterized by elevated levels of phenylalanine (Phe) in plasma and cerebrospinal fluid of PKU patients, leading to mental retardation. The developmental delay in the cerebral cortex is one of the characteristic pathologic changes in untreated phenylketonuria patients. This is thought to be due to the toxic effects of Phe and/or its metabolites; however, the underlying mechanisms are as yet unknown. In this study, using a model system in which cultured cortical neurons were induced with Phe, we observed that Phe inhibited the longest neurite outgrowth and induced the neuronal death. We further demonstrated that the expression of BDNF mRNA and protein was significantly decreased by Phe, together with a decrease in extracellular signal-regulated kinase (ERK) and Akt phosphorylation activity. There was no change in expression of TrkB mRNA and protein. Considering the important role of BDNF in normal brain development and function, these L: -Phe-induced changes in BDNF in PKU brain may be a critical element of the neurological symptoms of PKU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.