Abstract

Previous studies on biological pretreatment of switchgrass by solid-state fermentation with Acidothermus cellulolyticus 11B have shown that inhibitory compounds prevent growth on untreated switchgrass. A. cellulolyticus was grown in liquid medium containing cellobiose with phenolic monomers added to determine if the phenolic compounds are one possible source of inhibition. Cinnamic acid derivatives (trans-p-coumaric, trans-ferulic, and hydrocinnamic acids), hydroxybenzoic acids (p-hydroxybenzoic, syringic, and vanillic acids), benzaldehydes (vanillin and p-hydroxybenzaldehyde), and condensed tannin monomers (catechin and epicatechin) were tested at levels up to 20 mM. All compounds exhibited a dose-response relationship and strongly inhibited growth at 20 mM. trans-p-Coumaric acid was found to be the strongest inhibitor of A. cellulolyticus growth, with a specific growth rate of 0.004 h(-1) at 1 mM (0.18 h(-1) without phenolic monomer). GC-MS and HPLC methods were used to confirm the presence of these phenolic compounds in switchgrass and measure the amounts extracted using different conditions. The amounts of phenolic compounds measured were found to be higher than the threshold for growth inhibition. Leaching with water at 55°C was inefficient at removing bound phenolics, whereas NaOH treatment improved efficiency. Phenolic compounds spiked into alkaline pretreated switchgrass were also found to inhibit growth of A. cellulolyticus in solid-state fermentation. However, addition of insoluble polyvinylpolypyrrolidone (PVPP) to switchgrass improved growth of A. cellulolyticus in liquid cultures, providing a possible approach for alleviating microbial inhibition due to phenolic compounds in lignocellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call