Abstract

The effects of the inducers of the hepatic microsomal enzyme system, phenobarbital and 3-methylcholanthrene, on theophylline plasma half-life and on the elimination of theophylline and its metabolites in urine and feces have been examined. The results indicate that induction of the hepatic microsomal drug-metabolizing enzyme system significantly decreases plasma theophylline half-life. In this respect, 3-methylcholanthrene was more effective than phenobarbital. Control theophylline half-life was 3.5 hr. After phenobarbital or 3-methylcholanthrene pretreatment, the theophylline half-life was 2.6 and 0.8 hr respectively. Thin-layer Chromatographie analysis of the urine showed three radioactive peaks corresponding to 1,3-dimethyluric acid, 1-methyluric acid and unchanged theophylline. Both inducing agents significantly increased the urinary elimination of 1,3-dimethyluric acid above that seen in control animals throughout the 24-hr collection period, but only 3-methylcholanthrene increased the total amounts of 1-methyluric acid excreted. Urinary elimination of unchanged theophylline was decreased from control values by both agents. A small, but not statistically significant, increase in the fecal elimination of radioactive material was also noted in the animals pretreated with phenobarbital. The results indicate that alteration in hepatic drug-metabolizing activity may markedly affect the in vivo biotransformation of theophylline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.