Abstract

In this paper, we propose an algorithm for suppressing intercarrier interference due to phase noise in coded orthogonal frequency division multiplexing (OFDM) systems. The algorithm approximates the phase-noise waveform by using a Fourier series approximation for the current phase-noise realization. Thereby, it cancels the effects of the phase noise beyond the standard common phase error correction used in contemporary OFDM standards. The algorithm requires that the correlation properties of the intercarrier interference are known. We calculate these properties in terms of the phase-noise spectral correlation matrix for both Wiener and Ornstein-Uhlenbeck phase-noise models, respectively. This modeling corresponds to a free-running oscillator, as well as a phase-locked loop realization of the local oscillator in orthogonal frequency division multiplexing transceivers. For both transceiver configurations, we investigate the performance of the proposed algorithm. It is demonstrated that the new algorithm achieves as much as one order of magnitude better performance in terms of packet/bit error rate when compared to a receiver with only the common phase error suppression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call