Abstract

Alzheimer's disease (AD) is a neurodegenerative brain disease affecting cognitive and physical functioning. The currently available pharmacological treatments for AD mainly contain cholinesterase inhibitors (AChE-I) and N-methyl-D-aspartic acid (NMDA) receptor antagonists (i.e., memantine). Because brain signals have complex nonlinear dynamics, there has been an increase in interest in researching complexity changes in the time series of brain signals in individuals with AD. In this study, we explore the electroencephalographic (EEG) complexity for making better observation of pharmacological therapy-based treatment effects on AD patients using the permutation entropy (PE) method. We examined EEG sub-band (delta, theta, alpha, beta, and gamma) complexity in de-novo, monotherapy (AChE-I), dual therapy (AChE-I and memantine) receiving AD participants compared with healthy elderly controls. We showed that each frequency band depicts its own complexity profile, which is regionally altered between groups. These alterations were also found to be associated with global cognitive scores. Overall, our findings indicate that entropy measures could be useful to show medication effects in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.