Abstract

Aim: The pharmacokinetics and pharmacodynamics of vemurafenib are characterized by a wide interpatient variability. Since multiple polymorphic enzymes and drug transporters are involved in vemurafenib pharmacokinetics, we studied associations of polymorphisms on vemurafenib-associated toxicities. Patients & methods: Prospectively collected samples of 97 melanoma patients treated with vemurafenib alone (n=62) or in combination with cobimetinib (n=35) were genotyped for ABCB1 (3435C>T), ABCG2 (421C>A, 34G>A) and CYP3A4 (*22, 15389C>T) polymorphisms. Associations between these variants and the incidence of toxicities were studied. Results:CYP3A4*22 was significantly associated with increased risk for grade ≥3 nausea, grade 1-4 hyperbilirubinemia, and cutaneous squamous cell carcinoma. ABCB1 3435C>T was a predictor for grade ≥3 toxicity. Conclusion: Genetic variants in CYP3A4 and ABCB1 are associated with vemurafenib-associated toxicities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call