Abstract
ABSTRACT Cr(VI) and p-chlorophenol (4-CP) are common pollutants in the aquatic environment but are difficult to degrade and have complex toxic effects. A downflow Leersia hexandra microbial fuel cell (DLCW-MFC) system was constructed to purify Cr(VI) and 4-CP polluted wastewater, as well as to investigate the effects of different pHs on Cr(VI) and 4-CP removal, electrochemical performance, physiological and biochemical responses, and Cr enrichment status of L. hexandra. The results showed that the DLCW-MFC had the highest Cr(VI) and 4-CP removal rates at pH 6.5, which were 99.0% and 78.6%, respectively. At the same time, 543 mV output voltage and 72.25 mW/m2 power density of the system were generated at pH 6.5, which were better than those at pH 7.4 and pH 5.8. The electrochemical performance result showed that pH 6.5 enhanced charge transfer ability and ion diffusion ability of the system. pH 6.5 also promoted growth and photosynthesis, and enhanced the Cr enrichment capacity (4.56 mg/10 plants) of L. hexandra. These results demonstrate that pH 6.5 was the optimum pH for the DLCW-MFC synchronous treatment of Cr(VI) and 4-CP as well as the generation of electricity. The DLCW-MFC designed in this study will provide a reference for purifying polluted wastewater and generating electricity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.