Abstract

Electron transfer from zinc cytochrome c to copper(II)plastocyanin in the electrostatically- stabilized complex [Crnogorac MM, Shen C, Young S Hansson O, Kostic NM (1996) Biochemistry 35, 16465?74]. We study this rearrangement in four complexes Zncyt/pc(II), which zinc cytochrome c makes with the wild-type form and the single mutants Asp42Asn, Glu59Gln, and Glu60Gln of plastocyanin. The rate constant for the rearrangement, kF differs for the four forms of plastocyanin but is independent of pH from 5.4 to 9.0 in all four cases. That kF is affected by the single mutations but not by pH changes suggests that the residues Asp 42, Glu59, and Glu60 in the wild-type plastocyanin remain deprotonated (i.e., as anions) within the Zncyt/pc(II) complex throughout the pH range examined. This fact agrees with the notion that loss of salt bridges in the initial (redox-inactive) configuration of the complex is compensated by formation of new salt bridges in the rearranged (redox-active) configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.