Abstract
The reversible association of Ca42+-calmodulin with the inactive catalytic subunit of myosin light chain kinase results in the formation of the catalytically active holoenzyme complex [Blumenthal, D. K., & Stull, J. T. (1980) Biochemistry 19, 5608--5614]. The present study was undertaken in order to determine the effects of pH, temperature, and ionic strength on the processes of activation and catalysis. The catalytic activity of myosin light chain kinase, when fully activated by calmodulin, exhibited a broad pH optimum (greater than 90% of maximal activity from pH 6.5 to pH 9.0), showed only a slight inhibition by moderate ionic strengths (less than 20% inhibition at mu = 0.22), and displayed a marked temperature dependence (Q10 congruent to 2; Ea = 10.4 kcal mol-1). Thermodynamic parameters calculated from Arrhenius plots indicate that the Gibb's energy barrier associated with the rate-limiting step of catalysis is primarily enthalpic. The process of kinase activation by calmodulin had a narrower pH optimum (pH 6.0--7.5) than did catalytic activity, was markedly inhibited by increasing ionic strength (greater than 70% inhibition at mu = 0.22), and exhibited nonlinear van't Hoff plots. Between 10 and 20 degrees C, activation was primarily entropically driven (delta S degrees congruent to 40 cal mol-1 deg-1; delta H degrees = -900 cal mol-1), but between 20 and 30 degrees C, enthalpic factors predominated in driving the activation process (delta S degrees congruent to 10 cal mol-1 deg-1; delta H degrees = -9980 cal mol-1). The apparent change in heat capacity (delta Cp) accompanying activation was estimated to be -910 cal mol-1 deg-1. On the basis of these data we propose that although hydrophobic interactions between calmodulin and the kinase are necessary for the activation of the enzyme, other types of interactions such as hydrogen bonding, ionic, and van der Waals interactions also make significant and probably obligatory contributions to the activation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.