Abstract

Liposomes have been used for biomimetic containers and to study phenomena ranging from photosynthetic systems to membrane fusion and dynamics. An important aspect of many preparations and in biological processes is the presence of a pH gradient across the membrane. Here, experiments were conducted using capillary electrophoresis to investigate the effects of this gradient on liposomes composed of phosphatidic acid, phosphatidylcholine, and cholesterol. pH gradients for the liposomes were created by titration of the exterior buffer; then the electrophoretic properties were analyzed by capillary electrophoresis and the size was measured by laser light scattering. Our results show that the presence of a pH gradient has a significant effect on the electrophoretic migration of liposome samples, induced principally by a change in effective charge. The differences in charge for the liposome samples are evaluated with regard to acid-base equilibria, which is shown to be inadequate to describe the dynamics of the system. A more complex capacitive theory incorporating elements of the Overbeek-Booth theory and the relaxation effect appears to more effectively describe the results and could aid in predicting liposome behavior under various pH gradient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.