Abstract

The effects of pH and ionic strength on the equilibrium constants and rate constants (binding and dissociation rate constants) between riboflavin binding protein (RBP) and flavins (riboflavin, 3-carboxymethylriboflavin [CMRF], and FMN) were studied by fluorometry. The equilibrium constant and the binding rate constant between RBP and riboflavin were pH-independent between pH 6 and 9, and both constants were also independent of the ionic strength, while the constants between RBP and CMRF or FMN were dependent on both pH and ionic strength. The dissociation rate constants between RBP and the flavins used here were not so dependent on pH and ionic strength in the pH region 6 to 9, and the patterns of pH profiles as a whole were similar to each other, although the constants for FMN were about 30-60 times larger than those for CMRF or riboflavin. RBP had lower affinity for FMN than for riboflavin in the neutral pH region, which is based on the small binding rate constant and the large dissociation rate constant for FMN. The former is due to an electrostatic repulsion force between negative net charges of RBP and the phosphate group of FMN, and the latter is due to steric interference by the phosphate group of FMN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.