Abstract

PGE(2) is a proinflammatory mediator that can influence many cell types. This study was conducted to determine whether PGE(2) alters the electrical activity of distal colonic myenteric neurons, because colitis is typically associated with altered motility and changes in neural signaling may be involved. The electrical properties of intact myenteric neurons were evaluated with intracellular microelectrodes. Acute application of PGE(2) elicited a prolonged depolarization in both AH and S neurons with little effect on input resistance or electrical excitability. PGE(2) effects were suppressed by tetrodotoxin (TTX) or neurokinin (NK) receptor antagonists, indicating that PGE(2) acts directly and indirectly to depolarize colonic neurons. PGE(2)-evoked depolarization was concentration dependent (approximately 3 microM EC(50)) and was attenuated by the E prostanoid (EP)1/2 receptor antagonist, AH-6809. When preparations were maintained for 48 h in the presence of the stable PGE(2) analog PGE(2)-ethanolamide (10 microM), neurons exhibited a significant membrane depolarization and enhanced excitability. These results suggest that PGE(2) can play a role in altered motility in colitis by evoking changes in the electrical properties of myenteric neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call