Abstract

Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) controls mitochondrial biogenesis, but its role in cardiovascular diseases is unclear. The purpose of this study is to explore the effect of PGC1α on myocardial ischemia-reperfusion injury and the underlying mechanisms. The transverse coronary artery of SD rat was ligated for 30 minutes followed by 2 hours of reperfusion. Triphenyltetrazolium chloride (TTC) staining was performed to measure the area of myocardial infarction. Immunohistochemistry and Western blotting were used to detect the PGC1α expression in myocardium. The rat cardiomyocyte H9C2 was subjected to hypoxia/reoxygenation (H/R) with the knockdown of PGC1α or hypoxia- inducible factor 1α (HIF-1α), or with treatment of metformin. Western blotting was used to detect the expression of PGC1α, HIF-1α, p21, BAX, and caspase-3. CCK-8 was performed to detect cell viability, and flow cytometry was used to detect apoptosis and mitochondrial superoxide (mitoSOX) release. RT-qPCR was used to detect the mRNA expression of PGC1α and HIF-1α. Besides, chromatin immunoprecipitation (ChIP)-qPCR and luciferase reporter gene assay were applied to detect the transcriptional regulation effect of HIF-1α on PGC1α. After I/R, the PGC1α expression was increased in infarcted myocardium. H/R induced H9C2 cell apoptosis (P<0.001). The release of mitoSOX (P<0.001) and protein expression of PGC1α, and apoptosis-related p21, BAX, and caspase-3 were increased. However, knockdown of PGC1α reduced apoptosis (P<0.01) and mitoSOX release (P<0.001), and decreased protein expression of apoptosis-related gene. HIF-1α is bound to the promoter region of PGC1α. Knockdown of HIF-1α inhibited the transcription and protein expression of PGC1α and further to reduce the apoptosis (all P<0.001) and mitoSOX release (P<0.01). While overexpression of PGC1α reversed the effects caused by HIF-1α knockdown (all P<0.001). Metformin effectively reduced H/R-induced apoptosis (P=0.013), mitoSOX release (P<0.001), HIF-1α, PGC1α and apoptosis-related protein expression, recovered the cell viability (P<0.001), and reduced myocardial infarction (P=0.003). After I/R, HIF-1α up-regulates the expression of PGC1α, leading to an increase in ROS production and aggravation of injury. Metformin can inhibit the accumulation of HIF-1α during hypoxia and effectively protect myocardium from ischemia/reperfusion injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call