Abstract

Alchemical perturbation density functional theory has been shown to be an efficient and computationally inexpensive way to explore chemical compound space. We investigate approximations made, in terms of atomic basis sets and the perturbation order, introduce an electron-density based estimate of errors of the alchemical prediction, and propose a correction for effects due to basis set incompleteness. Our numerical analysis of potential energy estimates, and resulting binding curves, is based on coupled-cluster single double (CCSD) reference results and is limited to all neutral diatomics with 14 electrons (AlH⋯NN). The method predicts binding energy, equilibrium distance, and vibrational frequencies of neighboring out-of-sample diatomics with near CCSD quality using perturbations up to the fifth order. We also discuss simultaneous alchemical mutations at multiple sites in benzene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.