Abstract

Convective heat transfer with pin-fin arrays have been studied extensively in laboratory experiments where flow is introduced to the array uniformly over the channel span. However, the flow path in actual cooling designs is often serpentine-shaped with multiple turns, and the pin-fin array section is often located immediately downstream of a turn. The present study, using an analogous mass transfer technique based on naphthalene sublimation, investigates the effects of three different, nonaxial flow entries on array heat transfer for both an inline and a staggered arrangement of pins. The measurement acquires the mass transfer rate of each individual pin in a five row by seven column array for the Reynolds number varying from 8000 to 25,000. The mass transfer and associated flow visualization results indicate that the highly nonuniform flow distribution established at the array entrance and persisting through the entire array can have significant effects on the array heat transfer characteristics. Compared to the conventional case with axial-through flow entrance, the overall array heat transfer performance can be either enhanced or degraded, depending on the actual inlet arrangements and array configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.