Abstract

The effects of hippocampal (HPC) damage on rats’ novel object preference (NOP) performance have been rather consistent, in that HPC lesions do not disrupt novelty preferences on the test. Conversely, there have been inconsistent findings regarding the effects of perirhinal cortex (PRh) lesions on rats’ novel-object preferences. Given the concerns that have been raised regarding the internal validity of the NOP test, viz. that the magnitude of the novel-object preference does not necessarily reflect the strength in memory for an object, it could explain the discrepant findings. The goal of the present experiment was to examine the effects of PRh and HPC lesions on rats’ object-recognition memory using a new modified delayed nonmatching-to-sample (mDNMS) task, as it circumvents the interpretational problems associated with the NOP test. Rats received PRh, HPC, or Sham lesions and were trained on the mDNMS task using a short delay (∼30 s). Both PRh and HPC rats acquired the task at the same rate as Sham rats, and reached a similar level of accuracy, indicating intact object-recognition. Thereafter, rats were tested on the NOP test using a 180-s delay. Rats with HPC lesions exhibited significant novel-object preferences, however, both the PRh and Sham rats failed to show a novelty preference. The discrepancy in both the PRh and Sham rats’ performance on the mDNMS task and NOP test raises concerns regarding the internal validity of the NOP test, in that the magnitude of a rat’s novel-object preference does not accurately reflect the persistence or accuracy of a rat’s memory for the sample object.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call