Abstract

To characterize the influence of perfusion on the measurement of diffusion changes over time when ADC is computed using standard two-point methods. Functional diffusion maps (FDMs), which depict changes in diffusion over time, were compared with rCBV changes in patients with brain tumors. The FDMs were created by coregistering and subtracting ADC maps from two time points and categorizing voxels where ADC significantly increased (iADC), decreased (dADC), or did not change (ncADC). Traditional FDMs (tFDMs) were computed using b = 0,1000 s/mm(2). Flow-compensated FDMs (fcFDMs) were calculated using b = 500,1000 s/mm(2). Perfusion's influence on FDMs was determined by evaluating changes in rCBV in areas where the ADC change significantly differed between the two FDMs. The mean ΔrCBV in voxels that changed from iADC (dADC) on the tFDM to ncADC on the fcFDM was significantly greater (less) than zero. In addition, mean ΔrCBV in iADC (dADC) voxels on the tFDM was significantly higher (lower) than in iADC (dADC) voxels on the fcFDM. The ability to accurately identify changes in diffusion on traditional FDMs is confounded in areas where perfusion and diffusion changes are colocalized. Flow-compensated FDMs, which use only non-zero b-values, should therefore be the standard approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.