Abstract

To safely contain Per-and Polyfluoroalkyl substances (PFAS) in municipal solid waste landfills and contaminated soil monofills, it is necessary to understand how these substances interact with components of engineered systems designed to contain them. This paper examines the interaction between one of the most critical components of the system: a high-density polyethylene (HDPE) geomembrane. The same geomembrane is immersed in PFAS solution and synthetic municipal solid waste leachate containing PFAS for 2.5 years, and the effects of PFAS on antioxidant depletion time is examined. The geomembrane is incubated in ovens at 85-40 °C to obtain data for Arrhenius predictions at typical landfill temperatures. When exposed to PFAS solution alone, the antioxidant depletion times are smaller than when the same geomembrane is immersed in synthetic municipal solid waste leachate alone. The combination of the two has a synergistic effect which leads to an even greater reduction in antioxidant depletion time for this geomembrane, with results showing a 68% decrease in predicted antioxidant depletion time at a typical landfill temperature of 35 °C when PFAS is present in leachate. This study highlights the need to consider the potential impact of PFAS on the service life of geomembranes used to contain them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.