Abstract

Three experiments examined the effects of stimulus duration, retinal eccentricity, and visual noise on the processing of human faces presented to the left visual field/right hemisphere (LVF-RH) and right visual field/left hemisphere (RVF-LH). In Experiment 1 observers identified which of 10 similar male faces was presented on a screen. The single face was presented for 10, 55, or 100 ms at 1 degree, 4 degrees, or 9 degrees of visual angle to the left or right of fixation. Decreasing stimulus duration and increasing retinal eccentricity lowered face recognition. The effect of duration was the same for LVF-RH and RVF-LH trials, but the detrimental effect of increasing retinal eccentricity was larger on LVF-RH trials than on RVF-LH trials. In Experiment 2 observers indicated whether a single face from this same set was a member of a memorized set of five positive faces. The probe face on each trial was presented alone or embedded in visual noise. Visual noise increased the error rate more on LVF-RH trials than on RVF-LH trials. This effect was replicated in Experiment 3, which also required observers to make a much easier discrimination between male and female faces. In the male/female task visual noise tended to impair performance more on RVF-LH trials than on LVF-RH trials, opposite the effect for the male/male task. These results are discussed in terms of hemispheric asymmetry for global versus local features of faces, the level of feature analysis demanded by a task, and the level of feature analysis most disrupted by perceptual degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call