Abstract

Peripheral prisms (p-prisms) improve blind-side detection of hazards in hemianopia by shifting the image of the hazard into the intact visual field. Collision judgments can be made accurately after detection by using a gaze shift to fixate the hazard in the prism-free portion of the lens, but this is slow relative to normal peripheral vision. A prior study found that prism adaptation for visual direction did not occur with general wear. We developed a perceptual-motor training regimen that resulted in accurate pointing at p-prism targets after six 1-hour sessions. This study aimed to determine if improvements in pointing accuracy from perceptual-motor training generalized to collision judgments during simulated walking. Participants with hemianopia (n = 13) made collision judgments in virtual reality for a person appearing 0.4 to 13.5° from the walking path. Judgments were measured under fixed gaze, requiring collision judgments via the p-prism image only, and free gaze, representing a more natural scenario. Measurements were made without and with p-prisms immediately after fitting, after a 2-week acclimation, after training, and 3 months later. Controls (n = 13) did one visit without p-prisms. Controls had 100% detection and symmetrically distributed collision judgments for the central 33 and 36% of hazards under fixed gaze and free gaze, respectively. In hemianopia, the seeing side was not different from controls. Blind-side detection was reduced without p-prisms to 40% fixed gaze and 82% free gaze and improved with p-prisms to 99% fixed gaze and 97% free gaze (P < .001). When first worn, fixed-gaze prism side collisions were 63 versus 37% on the seeing side and 41 versus 39% for free gaze (P < .001). There was a small improvement for fixed gaze after the 2-week acclimation (53%, P < .001), but no improvements from training or an additional 3 months of use. P-prisms improved detection, but collision judgments were inaccurate when seen only via the p-prisms and did not improve with perceptual-motor training. Patients should continue to be advised to turn their head and eyes to fixate the hazard after detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.