Abstract

A series of copolymers of predominantly poly(ethylene oxide) (PEO) with mono-phenyl (HQ), biphenyl (BP) units, or both of them (HQ/BP) in the backbone were synthesized. The solid polymer electrolytes (SPEs) were prepared from three different types of copolymers (HQ-PEG, BP-PEG, and HQ/BP-PEG) employing lithium perchlorate (LiClO 4) as a lithium salt at a fixed salt concentration of [EO]/[Li +]=8. Their ionic conductivities were investigated to exploit the structure–ionic conductivity relationships as a function of structural change in rigid phenyl units and chain length ratio between flexible PEO chain and rigid phenyl units. As more rigid phenyl units were incorporated in the backbone chain, the formation inter- and intra-molecular complex with LiClO 4 became weaker and lower ionic conductivities were observed. And it was also found that higher ionic conductivity is obtained with increasing PEO chain length because inter- and intra-molecular dissociation power of PEO increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call