Abstract

To reconstruct the fractured skull, affected patients are advised to undergo cranioplasty, which is a surgical procedure to repair the cranial defect by implanting materials such as autologous bone grafts or synthetic alloplastic materials. The use of synthetic alloplastic materials such as hydroxyapatite (HA) has been widely accepted due to their biocompatibility and suitability for larger cranial defects. The zinc hydroxyapatite (ZnHA) material is favourable as HA mimics 60% of the actual human bone, whereas zinc helps to improve its biomechanical properties. The purpose of this study is to construct the ZnHA cranial implant with different pore sizes of 600, 900, and 1200 µm in pentagonal shapes and to study its mechanical performance. At the end of the research, it was found that the implant with a pore size of 900 µm is the most appropriate implant to be utilized without affecting its mechanical performance. Aspects such as the deformation and von Mises stress are discussed to assist on the development of the ZnHA cranial implant. Keywords — Biomechanical analysis, cranial implant, finite element analysis, pore size, zinc hydroxyapatite

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call