Abstract

Oxaliplatin is one of the agents used against colorectal cancer. Using PEG-liposome encapsulated oxaliplatin may enhance the accumulation of drugs in tumor cells, inducing apoptosis. However, the mechanism of action of PEG-liposome encapsulated oxaliplatin remains unclear. SW480 human colorectal cancer cells were treated with empty PEG-liposomes, free oxaliplatin or PEG-liposomal oxaliplatin. Cell cycle and apoptosis were assessed using fluorescence confocal microscopy and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick-end-labeling (TUNEL). Western blotting was used to analyze the expression of pro-apoptotic, anti-apoptotic and cyclin proteins. We found that PEG-liposomal oxaliplatin induced a stronger apoptotic response than empty PEG-liposomes or free oxaliplatin. Moreover, expression of Cyclin D1 increased, whereas expression of Cyclin A decreased after treatment with PEG-liposomal oxaliplatin. Furthermore, the cell cycle was arrested in the G1 phase. The results presented here indicate that PEG-liposome entrapment of oxaliplatin enhances the anticancer potency of the chemotherapeutic agent. The effect of PEG-liposomal oxaliplatin on apoptosis of SW480 human colorectal cancer cells may be through regulation of expression of Cyclin A or Cyclin D1, as well as pro-apoptotic and anti-apoptotic proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.