Abstract

The influence of pectin and guar gum on the creaming stability, microstructure and rheological properties of 1.0% (w/v) egg yolk plasma (EYP)-stabilized 25.0% (v/v) soybean oil-in-water emulsions was studied at pH 7.0. Addition of pectin/guar gum decreased creaming percentage, and no creaming was detected in the presence of 0.5% (w/v) pectin/guar gum as a result of increasing viscosity. At the end of 10 h, creaming percentage decreased from 61 to 57% with the addition of 0.05% (w/v) guar gum and to 39% with the addition of 0.2% (w/v) guar gum. Microscopic observations represented the droplet aggregation arising from the presence of nonabsorbing biopolymers. At \( \mathop \gamma \limits^{.} \) = 10 s−1, a tenfold increase in viscosity was observed in the presence of 0.5% (w/v) guar gum compared to the presence of 0.1% guar gum due to the thickening effect of polysaccharide. Increasing gum concentrations enhanced the viscosity and hence the consistency index. All emulsions, except for those containing 0.5% (w/v) guar gum, reflect the near-Newtonian behaviour with flow behaviour index, n, of 0.9–1.0. All emulsions exhibited a liquid-like behaviour at low frequencies ( 7.0 Hz), G′ became greater than G″ and the system behaved like an elastic solid. Addition of pectin at all levels cause no significant change in G′ and G″ values, whereas addition of guar gum, especially at a concentration of 0.5% (w/v), significantly improved these values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call