Abstract

ABSTRACT Recent work has shown that aside from the classical view of collisions by increasingly massive planetesimals, the accretion of mm to m-sized ‘pebbles’ can also reproduce the mass–orbit distribution of the terrestrial planets. Here, we perform N-body simulations to study the effects of pebble accretion on to growing planetesimals of different diameters located in the inner Solar system. The simulations are run to occur during the lifetime of the gas disc while also simultaneously taking Jupiter’s growth into account. We find that pebble accretion can increase the mass in the solid disc by at least a few times its initial mass with reasonable assumptions that pebbles fragment to smaller sized grains at the snow line and that gas-disc-induced orbital migration effects are in force. Such a large contribution in mass by pebbles would seem to imply that the isotopic composition of the inner Solar system should be similar to the pebble source (i.e. outer Solar system). This implication appears to violate the observed nucleosynthetic isotopic dichotomy of the sampled Solar system. Thus, pebble accretion played little or no role in terrestrial planet formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call