Abstract

Modulation of the voltage-dependent transient outward potassium current (IA) by Pb2+ was studied in acutely dissociated rat hippocampal pyramidal cells from the CA1 region at postnatal ages 7-14 days using the conventional whole-cell patch-clamp technique. In the presence of different concentrations of external Pb2+, the initial delay and activation time of IA were concentration-dependently lengthened. In particular, the initial delay was even longer in 1 mM Pb2+, showing no signs of saturation. Pb2+ also slowed the inactivation of IA, for decay time constants in the presence of Pb2+ were increased under the same experimental protocols. The activation curves, which were reasonably fitted by a single Boltzmann function, illustrated that Pb2+ increased the voltage threshold of IA and shifted the normalized activation current-voltage curves to more depolarizing voltage commands. Moreover, Pb2+ significantly affected the steady-state inactivation of IA. The application of Pb 2+ made the curves of the steady-state inactivation of IA shift to more depolarizing voltages with little change in the slopes factors. In brief, the results demonstrated that Pb2+ is a dose- and voltage-dependent, reversible blocker of IA currents of hippocampal CA1 neurons. The observations were fitted by the revised "Kuo and Chen type model", which postulates a Pb2+-selective site near the pore of the IA channel and that modulation of the IA channel by Pb2+ is the result of the competitive influences of Pb2+ on opening and inactivating different pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call