Abstract
Copper chemical mechanical polishing (CMP) is influenced by geometric characteristics such as line width and pattern density, as well as by the more obvious parameters such as slurry chemistry, pad type, polishing pressure and rotational speed. Variations in the copper thickness across each die and across the wafer can impact the circuit performance and reduce the yield. In this paper, we propose a modeling method to simulate the polishing behavior as a function of layout pattern factors. Under the same process conditions, the pattern density, the line width and the line spacing have a strong influence on copper dishing, dielectric erosion and topography. The test results showed: the wider the copper line or the spacing, the higher the copper dishing; the higher the density, the higher the dielectric erosion; the dishing and erosion increase slowly as a function of increasing density and go into saturation when the density is more than 0.7.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.