Abstract

A one-dimensional char combustion model including pore structure effects is used to numerically investigate single char particle combustion for several different types of char samples. Previously, it is expected that small char particles have less combustion time. However, the present work shows that this is true only if the combustion time is defined as that needed for a char particle diameter diminished below a certain value. If the combustion time is defined as time needed for the carbon conversion ratio higher than a certain value, there are optimal particle sizes in a limited combustion period. Just reducing the char particle sizes may not get high carbon conversion ratios. It has also been found that, in general, the larger particles have higher temperatures at the exterior surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call