Abstract

The present investigations evaluate the effects of particle size, particle loading and sliding distance on the friction and wear behavior of vinylester composites sliding against hardened ground steel on a pin-on-disc wear testing machine. The emphasis are given on the wear rate and coefficient of friction as a function of parameters such as sliding distance (5000–25,000m) at two different applied normal loads of 10N, 70N and at sliding speeds of 1.9m/s and 5.7m/s. Three distinct sizes of cenosphere particles (2μm, 900nm and 400nm) were prepared in the laboratory for preparing the particulates filled vinylester composites. The tensile strength, flexural and compressive strength of the cenosphere particulate filled vinylester composites were determined on a universal materials testing machine. It was found that the submicron size cenosphere particles as fillers contributed significantly to improve the mechanical properties. It was also found that the specific wear rate for all the vinylester composites decreases with sliding distance and after certain duration attains approximately a steady state value. It was observed that in the steady state region, the specific wear rates of vinylester composites vary only marginally. Scanning Electron Microscopy (SEM) analysis also has been carried to identify the wear mechanisms for the worn surfaces of vinylester composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.