Abstract

Barium titanate (BaTiO3) has attracted considerable attention as a perovskite ferroelectric ceramic material for electronic multilayer ceramic capacitors (MLCCs). Fine BaTiO3 nanopowders with a considerably high tetragonality directly influence the typical properties of nanopowders; however, their synthesis has remained challenging. In this study, we analyzed the effect of two different TiO2 powders with anatase and rutile phases in a solid-state reaction with barium carbonate (BaCO3). The effect of the particle size ratio (TiO2/BaCO3) of the raw materials on the tetragonality and particle size of the as-synthesized BaTiO3 powders was also determined through extensive characterization of the powders by X-ray diffraction, field-emission scanning electron microscopy, and Raman spectroscopy. The present investigation reveals that the design BaTiO3 structure is expected to advance the development of efficient catalytic and sensor materials for sustainable environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.