Abstract

Abstract Based on the critical velocity model, impact and capture efficiencies in an AGTB turbine cascade are investigated numerically under various inlet angles of mainstream, blowing ratios, particle sizes, and particle densities. The effect of hole configuration on deposition is analyzed based on comparisons of results from combined hole and cylindrical hole. The impact efficiency increases with the increase of particle size. Impact area on pressure side of blade surface expands with increasing of the mainstream inlet angle from 123 deg to 143 deg. The capture efficiency decreases with the increase of blowing ratio for 10 µm particles. For particles with densities of 1485 kg/m3, 1980 kg/m3, and 2475 kg/m3, the maximum capture efficiency is reached when the particle size is 5 µm. The particle capture efficiency for the combined hole is up to 3.9% lower than that for cylindrical hole when the mainstream inlet angle is 123 deg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.