Abstract

AbstractThe combined effect of particulate fouling and magnetic field on the efficiency of a convective–radiative porous fin heatsink with temperature‐dependent thermal conductivity is presented. The developed thermal models are solved using differential transformation method. The effects of thermal conductivity, porosity, convection, radiation parameter, and thermal fouling number on the fin thermal efficiency are investigated. The presence of thermal fouling on the surface of the fin is shown to increase the temperature distribution. The presence of particle deposition on the fin surface significantly decreases the rate of heat transfer as additional thermal resistance of the fouling layer decreases the thermal performance of porous fin heatsink. Moreover, the fin efficiency decreases as the value of fouled Biot, Darcy, radiation number, and thermogeometric parameter increases. It is established that Mf < Mc, which indicates that the efficiency of the fouled fin is greater than the efficiency of the clean fin. Furthermore, the result of the present study is validated with the established results of Chebyshev spectral collocation method and fourth‐order Runge–Kutta with shooting method and an error margin of 0.000000023 is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.