Abstract

Flame synthesis is a simple method to prepare sub-stoichiometric titanium dioxide (TiO2-x) nanoparticles. A rotating stagnation plate is often used as a substrate and to provide a cooling mechanism. The collection of particles from the rotating plate could be done in two ways: the conventional interval particle collection (IPC) method and a continuous particle collection (CPC). The effects of the deposition time and the rotation speed on the properties of titanium dioxide (TiO2) particles are investigated experimentally. For IPC, it was found that the properties of the collected samples are dependent on the deposition time. This creates an undesirable correlation between properties and synthesis yield. On the other hand, CPC approach allows for a continuous synthesis in which the particle properties are invariant with respect to the synthesis yield. The tunability of the particle properties is still achievable by controlling the rotation speed in the CPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.