Abstract
A heterogeneous model for the fast fluidized bed reactor which carries out a gas-solid non catalytic reaction is presented. The hydrodynamics of the fast fluidized bed is characterized by the model of Kwauk et al. (1985) which assumes the existence of two phases; a dense phase and a dilute pneumatic transport phase. For a given solid flowrate, the length of the reactor occupied by each phase depends on gas velocity, particle diameter and density and average voidage within the reactor. The gas-solid reaction is assumed to follow the shrinking core model. The solids are assumed to be completely backmixed in the dense phase and move in plug How in the dilute pneumatic transport phase. The gas phase is assumed to be in plug flow in both phases For given gas and solid flowrates, the transition from the dense phase flow to the fast fluidized bed (containing two regions) as functions of particle size and density is determined using the model of Kwauk et al. (1985). The numerical solution of the governing mass ba...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.